Classify BL samples into genetic subgroups.
classify_bl.RdAssemble the binary feature matrix and use the random forest prediction model to classify BL tumors into genetic subgroups. Please see PMID 36201743 on genetic subgroups of BL.
Usage
classify_bl(
these_samples_metadata,
maf_data,
projection = "grch37",
output = "both",
ashm_cutoff = 3
)Arguments
- these_samples_metadata
The metadata data frame that contains sample_id column with ids for the samples to be classified. Required input.
- maf_data
The MAF data frame to be used for matrix assembling. Any maf columns can be provided, but the required are "Hugo_Symbol", "NCBI_Build", "Chromosome", "Start_Position", "End_Position", "Variant_Classification", "HGVSp_Short", and "Tumor_Sample_Barcode". Required input.
- projection
The projection of the samples. Defaults to grch37.
- output
The output to be returned after prediction is done. Can be one of predictions, matrix, or both. Defaults to both.
- ashm_cutoff
Numeric value indicating number of mutations for binarizing aSHM feature. Recommended to use the default value (3).
Examples
if (FALSE) { # \dontrun{
test_meta <- get_gambl_metadata() %>%
filter(pathology == "BL")
maf <- get_ssm_by_samples(
these_samples_metadata = test_meta
)
predictions <- classify_bl(
these_samples_metadata = test_meta,
maf_data = maf
)
predictions <- classify_bl(
these_samples_metadata = test_meta,
maf_data = maf,
output = "predictions"
)
} # }