Circular overview of copy number data across a cohort
circular_CN_plot.Rd
Circular overview of copy number data across a cohort
Usage
circular_CN_plot(
pretty_CN_heatmap_output,
ideogram = TRUE,
track_height = 0.1,
min_correlation = 0.35,
max_neg_correlation = -0.06,
del_col = "#0000FF80",
gain_col = "#FF000080",
calculate_correlations = FALSE,
link_transparency = 0.8,
labelTheseGenes = c("CD58", "TLR2", "MCL1", "CDKN2A", "TMEM30A", "RHOA", "B2M", "PTEN",
"FAS", "ETV6", "GRB2", "FCGR2B", "CCND3", "CUX1", "MIR17HG", "TFPT", "CD274", "JAK2",
"CDK14", "BCL6", "EZH2", "HIST1H1E", "REL", "NOL9", "TNFRSF14", "TOX", "TP53", "RB1",
"TCF4", "HNRNPD", "BCL2", "NFKBIZ", "TNFAIP3", "PRDM1", "CD70", "MYC")
)
Arguments
- pretty_CN_heatmap_output
Output from the [GAMBLR.results::pretty_CN_heatmap] call.
- ideogram
Logical value indicating whether to plot ideogram. Default is TRUE.
- track_height
Change this to increase/decrease the height of the tracks. (0.1)
- min_correlation
Minimum correlation to consider when plotting links
- max_neg_correlation
Maximum negative value for correlations <1 to consider when plotting links
- del_col
Optionally specify a different colour to use for the CNV deletion track
- gain_col
Optionally specify a different colour to use for the CNV gain track
- calculate_correlations
Experimental! Calculate the correlation between CNVs between different chromosomes and link highly correlated regions
- link_transparency
Specify a different alpha to increase or decrease the transparency of links
- labelTheseGenes
Specify a vector of gene names to label in the plot
Examples
if (FALSE) { # \dontrun{
library(GAMBLR.open)
meta = get_gambl_metadata()
meta = check_and_clean_metadata(meta,duplicate_action="keep_first")
print("pretty_CN_heatmap")
all_segments = get_cn_segments(these_samples_metadata = meta)
all_states_binned = segmented_data_to_cn_matrix(
seg_data = all_segments,
strategy="auto_split",
n_bins_split=500,
these_samples_metadata = meta)
labelTheseGenes = c("REL","TP53")
CN_out = pretty_CN_heatmap(cn_state_matrix=all_states_binned,
these_samples_metadata = meta,
return_data = TRUE,
labelTheseGenes = labelTheseGenes)
circular_CN_plot(CN_out)
} # }