Skip to contents

Generates a visually appealing lollipop plot.

Usage

pretty_lollipop_plot(
  maf_df,
  gene = NULL,
  plot_title,
  by_allele = TRUE,
  max_count = 10,
  include_silent = FALSE,
  labelPos = NULL,
  show_rate = FALSE,
  title_size = 8,
  x_axis_size = 4,
  domain_label_size = 0,
  aa_label_size = 3
)

Arguments

maf_df

A data frame containing the mutation data.

gene

The gene symbol to plot.

plot_title

Optional, the title of the plot. Default is gene.

by_allele

Set to FALSE to consider all mutations at the same codon as equivalent. When FALSE, and combined with labelPos, the labels will only indicate the amino acid number. Default is TRUE.

include_silent

Logical parameter indicating whether to include silent mutations into coding mutations. Default is FALSE.

labelPos

Specify which AA positions to label in the plot (default is no labels).

Value

A lollipop plot.

Details

Retrieve maf data of a specific sample or a set of samples. A gene of interest can then be visualized with the given maf data. Silent mutations can be visualized setting include_silent to TRUE.

Examples

library(GAMBLR.open)
suppressMessages(
  suppressWarnings({

#get meta data (BL_Thomas)
metadata <- suppressMessages(get_gambl_metadata()) %>%
    filter(seq_type == "genome") %>%
    check_and_clean_metadata(.,duplicate_action="keep_first")

maf_df <- get_coding_ssm(
    these_samples_metadata = metadata
)

#construct pretty_lollipop_plot.
lollipop_result <- pretty_lollipop_plot(maf_df, "DDX3X")
print(lollipop_result)
}))